\(\int \frac {\cot ^3(e+f x)}{(a-a \sin ^2(e+f x))^{3/2}} \, dx\) [482]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 66 \[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a \cos ^2(e+f x)}}{\sqrt {a}}\right )}{2 a^{3/2} f}-\frac {\sqrt {a \cos ^2(e+f x)} \csc ^2(e+f x)}{2 a^2 f} \]

[Out]

-1/2*arctanh((a*cos(f*x+e)^2)^(1/2)/a^(1/2))/a^(3/2)/f-1/2*csc(f*x+e)^2*(a*cos(f*x+e)^2)^(1/2)/a^2/f

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {3255, 3284, 16, 44, 65, 212} \[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a \cos ^2(e+f x)}}{\sqrt {a}}\right )}{2 a^{3/2} f}-\frac {\csc ^2(e+f x) \sqrt {a \cos ^2(e+f x)}}{2 a^2 f} \]

[In]

Int[Cot[e + f*x]^3/(a - a*Sin[e + f*x]^2)^(3/2),x]

[Out]

-1/2*ArcTanh[Sqrt[a*Cos[e + f*x]^2]/Sqrt[a]]/(a^(3/2)*f) - (Sqrt[a*Cos[e + f*x]^2]*Csc[e + f*x]^2)/(2*a^2*f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3255

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3284

Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((b*ff^(n/2)*x^(n/2))^p/(1 - ff*x)
^((m + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2
]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\cot ^3(e+f x)}{\left (a \cos ^2(e+f x)\right )^{3/2}} \, dx \\ & = -\frac {\text {Subst}\left (\int \frac {x}{(1-x)^2 (a x)^{3/2}} \, dx,x,\cos ^2(e+f x)\right )}{2 f} \\ & = -\frac {\text {Subst}\left (\int \frac {1}{(1-x)^2 \sqrt {a x}} \, dx,x,\cos ^2(e+f x)\right )}{2 a f} \\ & = -\frac {\sqrt {a \cos ^2(e+f x)} \csc ^2(e+f x)}{2 a^2 f}-\frac {\text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a x}} \, dx,x,\cos ^2(e+f x)\right )}{4 a f} \\ & = -\frac {\sqrt {a \cos ^2(e+f x)} \csc ^2(e+f x)}{2 a^2 f}-\frac {\text {Subst}\left (\int \frac {1}{1-\frac {x^2}{a}} \, dx,x,\sqrt {a \cos ^2(e+f x)}\right )}{2 a^2 f} \\ & = -\frac {\text {arctanh}\left (\frac {\sqrt {a \cos ^2(e+f x)}}{\sqrt {a}}\right )}{2 a^{3/2} f}-\frac {\sqrt {a \cos ^2(e+f x)} \csc ^2(e+f x)}{2 a^2 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.89 \[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\sqrt {a \cos ^2(e+f x)} \left (\frac {\text {arctanh}\left (\sqrt {\cos ^2(e+f x)}\right )}{\sqrt {\cos ^2(e+f x)}}+\csc ^2(e+f x)\right )}{2 a^2 f} \]

[In]

Integrate[Cot[e + f*x]^3/(a - a*Sin[e + f*x]^2)^(3/2),x]

[Out]

-1/2*(Sqrt[a*Cos[e + f*x]^2]*(ArcTanh[Sqrt[Cos[e + f*x]^2]]/Sqrt[Cos[e + f*x]^2] + Csc[e + f*x]^2))/(a^2*f)

Maple [A] (verified)

Time = 0.93 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.02

method result size
default \(\frac {-\frac {\sqrt {a \left (\cos ^{2}\left (f x +e \right )\right )}}{2 a^{2} \sin \left (f x +e \right )^{2}}-\frac {\ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\cos ^{2}\left (f x +e \right )\right )}+2 a}{\sin \left (f x +e \right )}\right )}{2 a^{\frac {3}{2}}}}{f}\) \(67\)
risch \(\frac {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2}}{a \sqrt {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2} a \,{\mathrm e}^{-2 i \left (f x +e \right )}}\, f \left ({\mathrm e}^{2 i \left (f x +e \right )}-1\right )^{2}}-\frac {\ln \left ({\mathrm e}^{i f x}+{\mathrm e}^{-i e}\right ) \cos \left (f x +e \right )}{f \sqrt {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2} a \,{\mathrm e}^{-2 i \left (f x +e \right )}}\, a}+\frac {\ln \left ({\mathrm e}^{i f x}-{\mathrm e}^{-i e}\right ) \cos \left (f x +e \right )}{f \sqrt {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2} a \,{\mathrm e}^{-2 i \left (f x +e \right )}}\, a}\) \(168\)

[In]

int(cot(f*x+e)^3/(a-a*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(-1/2/a^2/sin(f*x+e)^2*(a*cos(f*x+e)^2)^(1/2)-1/2/a^(3/2)*ln((2*a+2*a^(1/2)*(a*cos(f*x+e)^2)^(1/2))/sin(f*x+e)
))/f

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.26 \[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\sqrt {a \cos \left (f x + e\right )^{2}} {\left ({\left (\cos \left (f x + e\right )^{2} - 1\right )} \log \left (-\frac {\cos \left (f x + e\right ) + 1}{\cos \left (f x + e\right ) - 1}\right ) - 2 \, \cos \left (f x + e\right )\right )}}{4 \, {\left (a^{2} f \cos \left (f x + e\right )^{3} - a^{2} f \cos \left (f x + e\right )\right )}} \]

[In]

integrate(cot(f*x+e)^3/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(a*cos(f*x + e)^2)*((cos(f*x + e)^2 - 1)*log(-(cos(f*x + e) + 1)/(cos(f*x + e) - 1)) - 2*cos(f*x + e)
)/(a^2*f*cos(f*x + e)^3 - a^2*f*cos(f*x + e))

Sympy [F]

\[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\cot ^{3}{\left (e + f x \right )}}{\left (- a \left (\sin {\left (e + f x \right )} - 1\right ) \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cot(f*x+e)**3/(a-a*sin(f*x+e)**2)**(3/2),x)

[Out]

Integral(cot(e + f*x)**3/(-a*(sin(e + f*x) - 1)*(sin(e + f*x) + 1))**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.52 \[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\frac {\log \left (\frac {2 \, \sqrt {-a \sin \left (f x + e\right )^{2} + a} \sqrt {a}}{{\left | \sin \left (f x + e\right ) \right |}} + \frac {2 \, a}{{\left | \sin \left (f x + e\right ) \right |}}\right )}{a^{\frac {3}{2}}} - \frac {1}{\sqrt {-a \sin \left (f x + e\right )^{2} + a} a} + \frac {1}{\sqrt {-a \sin \left (f x + e\right )^{2} + a} a \sin \left (f x + e\right )^{2}}}{2 \, f} \]

[In]

integrate(cot(f*x+e)^3/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

-1/2*(log(2*sqrt(-a*sin(f*x + e)^2 + a)*sqrt(a)/abs(sin(f*x + e)) + 2*a/abs(sin(f*x + e)))/a^(3/2) - 1/(sqrt(-
a*sin(f*x + e)^2 + a)*a) + 1/(sqrt(-a*sin(f*x + e)^2 + a)*a*sin(f*x + e)^2))/f

Giac [F(-2)]

Exception generated. \[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(cot(f*x+e)^3/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^3(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {cot}\left (e+f\,x\right )}^3}{{\left (a-a\,{\sin \left (e+f\,x\right )}^2\right )}^{3/2}} \,d x \]

[In]

int(cot(e + f*x)^3/(a - a*sin(e + f*x)^2)^(3/2),x)

[Out]

int(cot(e + f*x)^3/(a - a*sin(e + f*x)^2)^(3/2), x)